

Rohan Tripathi

732-558-9363 | trohan2000@gmail.com | linkedin.com/in/rohan2k | github.com/ethereal-2k

EDUCATION

Rutgers University – New Brunswick

Master of Science in Computer Science

New Brunswick, NJ

2023 – 2025

- GPA: 3.75/4.0
- Concentration: Systems & Machine Learning

Manipal Institute of Technology

Bachelor of Technology in Computer Science

Manipal, Karnataka

2019 – 2023

- GPA: 8.32/10
- Concentration: Computer Networks & Security

RESEARCH EXPERIENCE

Research Assistant — Rutgers University New Brunswick

Advisor: Prof. Richard Martin

Feb. 2025 – Present

New Brunswick, NJ

- Developing an end-to-end GPU-accelerated IPv4 source authentication design using SHA256 hashing and packet header manipulation to address source verification problems in the internet.
- Designed the middleware key-selection layer using Longest Prefix Match (LPM) on IPv4 source addresses, implemented with Patricia Trie, Binary Radix Trie, and DIR-24-8 and DXR algorithms for performance comparisons.
- Benchmarked lookup algorithms over routing tables up to 10M prefixes to support real-time cryptographic key selection.
- Developed optimized CUDA kernels for hashing 120-byte expanded IPv4 headers using SHA-256 with warp-level parallelism and coalesced memory.

Student Researcher — Manipal Institute of Technology

Advisor: Dr. Vivekananda Bhat K.

Jan. 2023 – May 2023

Manipal, Karnataka

- Built a secure, blockchain-based industrial IoT data exchange model for large scale deployment setups
- Designed and deployed ethereum smart contracts that reward fair exchanges and penalize malpractice
- Measured end to end deployment time and gas (ethereum cost) of each transaction/exchange using this setup and demonstrated its usability with a prototype

PUBLICATIONS

Tripathi, Rohan; Rao, Ritam; Bhat K., Vivekananda; Kumar Pandey, Abhishek; Kumar Das, Ashok. “Secure Blockchain Integration Approach for Knowledge Discovery in Industrial Internet of Things,” *IEEE Open Journal of the Communications Society*, vol. 6, pp. 4772–4787, 2025. DOI: 10.1109/OJCOMS.2025.3574816.

INDUSTRY EXPERIENCE

Software Developer — Xtreme Care

OneCheck Exclusions Platform

Oct. 2025 – Present

Bayside, New York

- Developed and deployed a production-ready healthcare exclusions screening platform supporting ElasticSearch with high performance fuzzy search on federal and state exclusion databases
- Built backend using AWS EC2, PostgreSQL, Redis, and NGINX with automated ingestion, normalization, versioning, and high-performance fuzzy search.
- automated re-checks, and creation of audit logs, multi-list filtering, and role-based access controls.
- Implemented monitoring, logging, and performance dashboards for reliability and compliance workflows (HIPAA and FWA compliance).

Network Security Intern — ERNET India

Web Application Testing

Jun 2022 - July 2022

Delhi, India

- Generated Penetration Test reports for different web applications using OWASP ZAP, Burpsuite and manual testing
- Set-up new networks with IPv6 configuration and firewall filtering
- Joined and completed the ICBBR Bug Bounty Researcher Certification and attained Falcon status in the National Security Database

ACADEMIC PROJECTS

Ciphertext Classification using Machine Learning Models	2025
<i>Rutgers University</i>	<i>New Brunswick, NJ</i>
<ul style="list-style-type: none">Developed ML models to classify ciphertexts encrypted with AES, DES, and RC5 using Logistic Regression, Random Forest, XGBoost, and BERT.Extracted statistical, n-gram, and entropy-based features enabling reliable attribution under variable length ciphertext conditions.Demonstrated that RC5 is easily distinguishable and AES and DES can be identified for short length ciphertexts	
Coverage-Optimized Fuzzer for Black-Box Adder Circuits	2024
<i>Rutgers University</i>	<i>New Brunswick, NJ</i>
<ul style="list-style-type: none">Designed a mutation-guided fuzzer for black-box hardware adder circuits to maximize functional and edge-case coverage.Used directed heuristics to discover rare corner cases and propagate faults through multi-bit structures.Evaluated coverage improvements using simulated hardware fault injection.	
Custom OS Schedulers and User-Level Thread Library	2023
<i>Rutgers University</i>	<i>New Brunswick, NJ</i>
<ul style="list-style-type: none">Implemented Round Robin, MLFQ, and priority-based schedulers in C with preemption and configurable time slicing.Built a user-level threading library providing context switching over pthreads with cooperative and preemptive modes.Added abstractions for thread creation, synchronization, and scheduling policies similar to lightweight kernel schedulers.	

OPEN SOURCE CONTRIBUTIONS

Linux Kernel Contributor (drivers/staging)	Oct. 2025
<i>Linux Kernel</i>	
<ul style="list-style-type: none">Authored and upstreamed Linux kernel patches through the LKML review process, focusing on coding-style correctness, dead code removal, and long-term maintainability of kernel drivers.Patches were reviewed and merged upstream, including a commit reviewed by Dan Carpenter and signed off by subsystem maintainer Greg Kroah-Hartman (kernel commit).	

TECHNICAL SKILLS

Programming Languages: C, C++, Rust, Python, CUDA, Go, Bash
Operating Systems: Kernel programming, system calls, process scheduling, virtual memory, paging, synchronization primitives, concurrency bugs, user-kernel boundary, filesystem internals
Distributed Systems: Consensus (Raft/Paxos), replication, failure detectors, consistency models, leader election, partition tolerance, membership protocols, log-structured design
Networking: TCP congestion control, packet scheduling, routing tables, NAT/firewalls, sockets programming, RPC frameworks, traffic engineering, software routers
Performance Engineering: Profiling (perf, eBPF, ftrace), microbenchmarking, cache behavior, NUMA, CPU pipeline effects, lock contention analysis, memory layout optimization
Parallel & GPU Computing: CUDA kernels, warp execution, memory hierarchies, streams/pinned memory, GPU-CPU data movement optimization, Nsight profiling
Storage Systems: SSD internals, I/O scheduling, log-structured storage, write amplification, journaling, caching layers, checkpointing
Security: Secure systems design, threat modeling, side-channel awareness, attack surfaces in OS/networks, cryptographic protocol basics
Tools & Platforms: Linux, Docker, Kubernetes, Git, perf, eBPF, Valgrind, gdb, strace, tcpdump, Wireshark, PostgreSQL, Redis, AWS

SOCIAL ACTIVITIES

Sightsavers India	Aug 2021 – Jan 2022
<i>Community health outreach (vision care awareness)</i>	<i>India</i>
REACH (Government of India Initiative)	Apr 2020 – Mar 2021
<i>Public health outreach (tuberculosis awareness)</i>	<i>India</i>